B. Math. Hons. II Year II Semester 2001-2002 Midsemestral Exam : Algebra IV Date: 25.02.2002 Time: 9.45-12.45 Instructor: B.Sury

Answer all questions. All questions carry equal marks.

1. Let $\rho : G \to GL(V)$ and $\sigma : G \to GL(W)$ be irreducible, finitedimensional, complex representations of a finite group G. Determine the linear transformations $T: V \to W$ such that

$$T \circ \rho(g) = \sigma(g) \circ T \ \forall \ g \in G.$$

- 2. Let $\rho: G \to GL(V)$ be a complex, irreducible representation of a finite group G. Prove that, upto scalars, there is a unique Hermitian inner product on V which is $\rho(G)$ -invariant.
- 3. State Schur's first orthogonality relations and use it to prove that the character of a complex, finite-dimensional representation of a finite group determines the representation uniquely.
- 4. Consider the following character table of a finite group G:

	W	х	у	Z
$\chi_{ ho_1}$	1	1	1	1
$\chi_{ ho_2}$	1	$e^{2\pi i/3}$	$e^{4\pi i/3}$	1
$\chi_{ ho_3}$	1	$e^{4\pi i/3}$	$e^{2\pi i/3}$	1
$\chi_{ ho_4}$	3	0	0	-1

Find: (a) O(G), (b) which one of w, x, y, z is central, (c) cardinalities of the conjugacy classes and (d) Dimensions of the irreducible representations.

5. Prove that over a field K, it is impossible to find an injective, irreducible representation

$$\rho: \mathbb{Z}/2 \oplus \mathbb{Z}/2 \to GL(V).$$

6. For any left *R*-module *M* over any ring *R* and, $\forall n \ge 1$, show that there is a ring isomorphism

$$End_RM^n \cong M_n(End_RM).$$

- 7. Let D be a division ring and let V be a left D-vector space of dimension 1. Show that $End_DV \cong D^{op}$ as rings, where D^{op} is the opposite ring of D (i.e., has the same underlying additive group as D and with multiplication a * b defined as a * b = ba where the right side denotes multiplication in D.)
- 8. Let M be any simple left R-module and let $x \in M$. Prove that, for any $\phi \in End_{End_RM}M$, $\exists r \in R$ such that $\phi(x) = rx$.
- 9. Let $\operatorname{Char} K = p > 0$ and suppose G is a finite group where p/O(G). Show that the element $\sum_{g \in G} g \in K[G]$ satisfies $\left(\sum_{g \in G} g\right)^2 = 0$. Hence, show that K[G] is not semisimple.